Phonetic implementation of phonologically different high tone plateaus in Luganda

Cerys Hughes, Seung Suk Lee, Alessa Farinella and Kristine M. Yu

University of Massachusetts Amherst

ICPhS 2023

August 7 2023

Luganda high tone spans

Luganda high tone spans

Do we see a difference in the plateau shape?

[òmùlàːŋgìràː**máŋóːmúlá**lwòːnò] "The prince recognizes this mad person." Data from Myers et al. 2018

[òmùlèːnzìjà**lúmánːáwó**lòvù] "The boy bit the chameleon."

Incomplete Neutralization for LH, HH Tones?

- Question: Do LH and HH spans have different degrees of sag in their phonetic implementations?
 - Pierrehumbert 1980 sag is a function of distance between 2 (intonational) tonal targets
 - Little work on whether there's similar phonetic implementation in lexical/grammatical tonal spreading processes
 - Different underlying specification, good test case for tonal incomplete neutralization
 - A lot of work on incomplete neutralization with segments, not so much on tone (Nicenboim et al. 2018)

- Dataset of 4 Luganda tone spans from Myers et al. 2018
- 793 tokens, 10 speakers
- ~20 sentences per span type
- Differences in phonetic implementation found in previous work (Myers et al. 2018, Lee et al. 2021, Hughes et al. 2022)

Incomplete Neutralization Methodology

- Recent trends to move beyond point-wise measures to take the entire contour into consideration
- Methodological innovations: trajectory shape representations
 - Vowel formant contours (Stanley et al. 2021, Hualde et al. 2021)
 - Liquid formant contours (Simonet et al. 2008)
 - F0 contours (Chen et al. 2013, Gubian et al. 2015, et seq)
- Researcher choices relevant to answering LH vs HH question:
 - Types of normalization
 - Methodological innovations:
 - Functional Principal Component Analysis (FPCA)
 - Generalized Additive Mixed-effects Model (GAMM)

Overview of the current study

- Using contour shapes in addition to point measurements can reveal further phonetic implementation differences
- Normalization technique is not just a preprocessing step: different choices can affect analyses of contour shapes
 - Within-speaker vs. Within-token
 - Mean centering vs. Z-scoring
- Different methods of analysis found different shape differences between LH and HH
 - FPCA or GAMM

Previously found implementation difference

- Data from Myers et al. 2018
 - Found difference in f0 rise and fall for some Luganda high tone spans (LL, HL, LH, HH) (Figure 7 from Myers et al. 2018)

Figure 7: Mean normalized f_0 (z) by tone class and position.

Previously found trajectory shape difference

• Lee et al. 2021, Hughes et al. 2022 found a difference between LH and HH in their trajectory shape using Functional Principal Component Analysis

Researcher choices in previous findings

- Normalization of F0 contours
 - By-speaker z-scoring in Myers et al. 2018
 - Within-token mean centering in Lee et al. 2021, Hughes et al. 2022
- Different methods of analyzing trajectory shapes
 - FPCA in Lee et al. 2021, Hughes et al. 2022
 - GAMM?

Normalization Techniques

FO Data-preprocessing approaches

- F0 vs Log-transformed F0 (e.g. semitones)
 - (Zhang 2018 a.o.)
- Mean centering vs scaling (z-scoring)
 - (Cheng et al. 2015, Gubian et al. 2015 a.o.), cf. (Myers et al. 2018, Lohfink et al. 2019, Gryllia et al. 2022 a.o.)
- Within-token vs within-speaker
 - (Cheng et al. 2015, Gubian et al. 2015 a.o.), cf. (Myers et al. 2018 a.o.)
- Current study:
 - Within-token mean-centering, within-speaker z-scoring, and within-speaker mean-centering

Within-Speaker z-scoring

span 🔶 HH 🔷 LH ቊ LL

Within-Token Centering

"Sag" defined in terms of token's FO range (Pierrehumbert 1981)

Analysis Method Choices

FPCA or GAMM

Representing Function Shapes

https://github.com/gavinsimpson/intro-gam-webinar-2020

Functional Principal Components Analysis (FPCA)

- Represent F0 contours with function shape weight
- Identify function shapes that FO contours maximally vary on
- Principal Component Functions (PCs)
- Weighted sum of PCs

Mixed effects linear regression model:

Predict sag PC weight from span type (LH or HH)

By-speaker random intercepts

Does span type (LH vs HH) have a significant effect on sag PC weight?

Lee et al. 2021, Hughes et al. 2022: difference in sag PC between LH, HH Present work: Replication (+ duration interaction) with small differences from normalization choice

22

- F0 normalized by speaker z-score
- Span type affects predicted sag PC score
- Duration interaction: Magnitude of difference is smaller
 for longer durations_{span} → нн → LH → LL

Generalized Additive Mixed-Effects Model

- Fit F0 contour over time
 - Model corrections for correlation between timepoints
- Unlike FPCA
 - only produces overall curve, not components like sag
- No evidence for sag difference between HH, LH curves

Proportion of H span duration

Generalized Additive Mixed-Effects Model

Differences besides sag found depending on F0 normalization choice
 By-speaker normalization:
 By-token centering:
 Fall difference

Proportion of H span duration

Discussion and Conclusion

- Understudied: understanding implementation of transition between tonal targets and tonal incomplete neutralization
- Normalization and model choice affect findings
 - Replication of LH, HH sag difference with FPCA
 - No apparent LH, HH sag difference with GAMMs
 - Less control over which component to test: interpretability
 - Small amount of data available
 - Need more work to support one choice over another, e.g. theoretical or perceptual results

Appendix

FPCA: HH significantly saggier than LH for all normalizations

30

FPCA: Difference in sag between HH and other span types *decreases* with longer durations (all normalizations)

By-speaker centered (st)

FPCA model specification: sag PC component weight as dependent variable

GAMM specification: with autoregressive AR1 structure to take time series dependence in residuals into account

FPCA

- Pick function shapes that F0 contours vary the most on
 - Regardless of category
- Can focus on component function shapes of interest (e.g. sag)
- F0 contour shape estimation separate from statistical modeling; regression modeling done on the PC coefficients
- Our case: heavy tails in regression

GAMMs

- F0 contour "wiggliness" can be directly conditioned on/interacted with category and other predictors
- Provides quantitative differences in overall contour shape between factor levels
- F0 contour shape estimation and regression modeling done together
 - Regression model requires corrections for correlations in time series data
 - Available tutorials/software for modeling heavy tails

By-Item Random Effects in Logistic Regression: Perfect Predictability

- We originally tried adding by-item intercepts to the FPCA + logistic regression models of Lee et al. (2021) and Hughes et al. 2023
- This led to the LH, HH sag difference being no longer significant
- However, this finding is an artefact of how the Luganda items are defined: each item belongs to one tone span, so item is a perfect predictor of tone span
- The model mainly used the by-item intercept to separate LH and HH
- Logistic regression on simulated data shows that when:
 - 1. there is a known underlying difference between span types in some predictor
 - 2. Item ID perfectly predicts span type
 - using by-item intercepts makes the effect of the predictor insignificant

By-Item Random Effects in Logistic Regression: Perfect Predictability

Logistic regression model without by-item intercept: significant difference in predictor between categories

Logistic regression model with by-item intercept: no significant difference in predictor between categories

Challenge: acoustic correlate methodology

Point measurements

- Vowel duration (ms) (Charles-Luce 1985; Port & Crawford 1989; Warner et al. 2004)
- Voice onset time (ms) (Roettger et al. 2014
- Closure duration (ms) (Charles-Luce 1985; Roettger et al. 2014)
- Formants at vowel center (Hz) (Fox & Jacewicz 2009)
- F0 minima and maxima (Hz) (Yuan & Chen 2014)

Trajectories

- Vowel formant contours (Stanley et al. 2021, Hualde et al. 2021)
- Liquid formant contours (Simonet et al. 2008)
- F0 contours (Chen et al. 2013, Gubian et al. 2015)

