
Advantages of constituency: computational
perspectives on Samoan word prosody

Kristine M. Yu

University of Massachusetts Amherst, Amherst MA 01003, USA,
krisyu@linguist.umass.edu

Abstract. In this paper, we computationally implement and compare
grammars of Samoan stress patterns that refer to feet and that refer
only to syllables in Karttunen’s finite state formalization of Optimal-
ity Theory, and in grammars that directly state restrictions on surface
stress patterns. The grammars are defined and compared in the high-
level language of xfst to engage closely with specific linguistic proposals.
While succinctness (size of the grammar) is not affected by referring to
feet in the direct grammars, in the OT formalism, the grammar with
feet is clearly more succinct. Moreover, a striking difference between the
direct and OT grammars is that the OT grammars suffer from scaling
problems.

Keywords: phonology, stress, finite state, optimality theory

1 Introduction

A substantial body of work in theoretical phonology suggests that referring to
phonological constituents—units such as feet, prosodic words and higher-level
constituents—can capture generalizations in phonological patterns [15,31,38,40].
But other work in theoretical phonology offers alternative ways to capture the
same kinds of generalizations [26,25,42]. And strikingly, computational descrip-
tions of phonological patterns have revealed strong structural universals without
referring to constituents at all [17,18]. Thus, while “we [phonologists] tend to help
ourselves to prosodic domains without further comment” [41], there is in fact
a puzzle here—Do constituents make phonological grammars more succinct?—
which hasn’t yet been carefully investigated computationally.1 The work here is
an initial effort to begin to fill this gap.

In this paper, we implement and compare phonological grammars of stress
patterns in Samoan monomorphs to assess whether grammars referring to feet
are more succinct than grammars that refer only to syllables. Succinctness com-
parisons between grammars of the same ilk have appeared in [8,30,14,39,5,34],

1 Some computational work has defined phonological patterns in terms of tiers [27,6,9]
from autosegmental theory [12], but tiers aren’t properly nested like constituents,
e.g. it’s generally assumed that feet don’t straddle prosodic words.



2

among other work. We define all grammars in xfst [4], software for comput-
ing with finite state machines, and our comparison is a 2 × 2 experimental de-
sign because we compare grammars with and without feet in two formalisms:
(a) Karttunen’s finite state Optimality Theory (OT) [24], which maps under-
lying forms to surface forms without an intermediate mapping to violations,
by using a special composition operator “lenient composition”, and (b) a “di-
rect” approach which directly regulates the surface patterns, e.g. [19,17]. Our
work thus addresses not only the role of constituents in phonology, but also
the advantages and disadvantages of different formalisms. Our method of im-
plementation and comparison is designed to engage closely and concretely with
linguistic analyses and empirical data; the goal here is not to make general,
abstract claims, but to carefully state very specific assumptions and claims
guided by specific proposals by phonologists to gain a clearer understanding
of the proposals. The code implementing and testing the grammars is available
at https://github.com/krismyu/smo-constituency-feet.

The rest of the paper is structured as follows: the remainder of this in-
troductory section operationalizes Do constituents make phonological grammars
more succinct? (§1.1) and describes the simplified language of stress patterns
of Samoan that our grammars are designed to capture (§1.2). We describe the
four grammars in §2: the direct account with feet (§2.2), the direct account with
syllables only (§2.3), the OT account with feet (§2.4), and the OT account with
syllables (§2.5). The discussion follows in §3, and we conclude with §4.

1.1 Operationalizing the research question

In this section, we define the concepts in our research question: phonological
grammars, constituents, and succinctness.

Phonological grammars and constituents In Formal Language Theory, a
grammar is defined by a finite alphabet of terminal symbols, a finite set of non-
terminal categories (which shares no members in common with the alphabet),
a finite set of rewrite rules, and a start symbol that initiates the derivation
[7,36]. The set of strings that can be derived by the grammar is defined to be
the language derived by the grammar. In a tree derived by the grammar, nodes
are labeled with categories, and a set of nodes form a constituent if they are
exhaustively dominated by a common node.

The nature of restrictions on the structure of rewrite rules determines the
structural complexity of the grammar. A standard definition of a (right) reg-
ular grammar says that it is a grammar where the rules are restricted to the
form A → aB, and A → ε, where A and B are non-terminal categories and a
is a terminal symbol. This restriction results in grammars where the only con-
stituents of length > 1 are suffixes. But prosodic constituents in phonological
theory include both prefixes and suffixes. For instance, given an alphabet of light
and heavy syllables Σ = {L,H}, suppose we defined a (right) regular grammar
that could derive the string LLHLL. Then the suffix-constituents derived by the
grammar would never be able to pick out the initial LL or the medial H as feet.

https://github.com/krismyu/smo-constituency-feet


3

A regular language is one that can be derived by a regular grammar. It has
been shown that (almost) all phonological patterns are regular [21,23]. We are
left with an apparent contradiction: if phonology has constituents that are both
prefixes and suffixes, then how is it that phonology is regular? The critical point
is that it’s the language—the set of admissible surface patterns—that’s been
shown to be regular in phonology, not the grammar that could derive it. There
are infinitely many grammars that can define the same language; supra-regular
grammars—with fewer restrictions on rewrite rules than regular ones—can define
regular languages. A language that can be defined by a grammar with suffix-
constituents can also be defined by one with non-suffix constituents. This paper
shows how we might assess which kind of grammar is, in a certain sense, better.

We define the four accounts as regular transductions. We start with a trans-
duction that marks up input sequences of light and heavy syllables with all pos-
sible stress patterns (Gen, defined in §2.1). From this point on, the approaches
using syllables and those using feet diverge: the syllable-based grammars are
defined with identity transductions (i.e. acceptors), while the foot-based “gram-
mars” are defined with non-identity transductions. The foot-based “grammars”
are defined with non-identity transductions because they mark up the stressed
sequences with boundary symbols indicating left and right foot edges: here we
are coding constituents into the state, not in the derivation tree.2 An approach
that codes constituents into the state can provide an exact account if the bound
on tree depth required is finite, and here we are only coding feet—constituents
up to depth 1.

We implement constituents into the state (with regular transductions), rather
than into the derivation to keep the definition of the grammars close to those that
phonologists use. Linguists have characterized a wealth of phonological patterns
with SPE-style rewrite rules, introduced in [8], and also with optimality-theoretic
(OT) constraints [32]. [23] showed that the expressivity of SPE-style phonolog-
ical characterizations is equivalent to that of regular transductions (provided
that cyclic application of rules is not permitted). And [10] showed that an OT
characterization has the expressivity of a regular transduction if the mapping
from input to possible output forms (Gen) and the constraints (Con) are regu-
lar, and the number of violations a constraint can assign is finitely bounded;
moreover, OT limited in such a way is sufficient for capturing analyses pro-
posed by phonologists, except for analyses with gradient constraints (which can
assign unboundedly many violations). Thus, the analytical tools that phonolo-
gists use—keeping the hedges mentioned above in mind—have the expressivity
of regular transductions.

While phonologists may work with the power of regular transductions, they
do not define phonological grammars by specifying transductions in the standard
way, by listing states and transitions. Instead, they specify them at a high-level.

2 Because they are defined with non-identity transductions, the foot-based “grammars”
are not grammars as defined by Formal Language Theory. But the phonological
literature calls phonological transductions—input-output mappings from underlying
forms to surface forms—like these “grammars”, and we’ll follow that convention.



4

We can do this too, by writing the grammars in xfst [4]. This language was care-
fully designed by linguists to make it easy for us to express generalizations in the
high-level language which are hard to express or detect at the level of a regular
grammar or a finite state machine. It includes pre-defined complex operators
to give us an high-level notation for regular transducers. For example, we can
write SPE-style rules using replacement rules with the syntax A -> B || L _ R,
where we simply need to specify the focus, change, and the structural descrip-
tion: this rule clearly does not meet the form A → aB. xfst allows us to define
our own operators and units, too, e.g. feet, and it compiles our high-level gram-
mars to machine-level finite state transducers. Since xfst grammars are compiled
into standard finite state representations, an xfst definition establishes that the
phenomenon described is regular (see [11]) and gives us a common formalism
in which we can define all four grammars. It is not possible to define “standard
OT” [33] fully in xfst: we could define Gen, which generates the set of candi-
date outputs, and the assignment of violation marks according to the set of
violable constraints in Con—but not the non-regular Eval relation for computing
the optimal candidate, since the number of states required to define Eval can’t
be bounded [10]. However, we can define Karttunen’s finite state formulation of
OT [24] in xfst, as it avoids Eval by mapping underlying forms directly to surface
forms with “lenient composition”.

Succinctness Having xfst as a common formalism for defining all four grammars
allows us to make a controlled comparison of the succinctness of the grammars.
We define the succinctness of a grammar as its size—the number of symbols it
takes to write it down (in xfst), under the conventions specified in §2. We define
size over the high-level xfst grammar rather than at the machine level because
it’s the high-level language that we can express and detect generalizations in; the
machines that xfst compiles are big and redundant by comparison. Defining size in
this way over a high-level language follows other linguistic work, e.g. [8,30,39,5].
And xfst is a reasonable choice for the high-level language because it was designed
by linguists to make it easy to state linguistic generalizations, and not, say, tailor-
made to prefer feet over non-feet.

Our metric for succinctness can be thought of a special case of minimum de-
scription length (MDL) [35], relativized to the descriptive notation provided by
xfst. MDL as a metric for succinctness balances the minimization of the size of
the grammar, which favors simple grammars that often overgenerate, with mini-
mization of the size of the data encoded by the grammar, which favors restrictive
but often overly memorized grammars. The alphabet over which the grammars
are defined (primary, secondary, and unstressed light and heavy syllables) is con-
stant across grammars.3 Since all grammar definitions are expressed in the same
language, we don’t need to translate them into some common language like bit
representations; we can simply measure xfst grammar size with symbol counting.
3 The foot-based accounts also introduce (, ), X , (X is an unparsed syllable), but: (i)
it’s not clear these should be included in the alphabet since they come in only in the
the calculation of stress, (ii) if they are included, they make a negligible difference.



5

The data is also the same across the comparisons (the set of stress patterns in
words elicited from linguistic consultants, plus some predicted ones up to 5 sylla-
bles; we have empirical data for monomorphs only up to 5 syllables). Moreover,
as we show in §3, all the grammars admit exactly the same set of stress patterns
up to 5 syllables (with one exception). Thus, the MDL metric, relativized to the
descriptive resources of xfst, reduces to the size of the grammar. That is, the size
of their encodings of the sequences up to 5 syllables is exactly the same, since the
possibilities allowed by the grammars in that range is identical. We accordingly
consider just the size of the four grammars, all expressed in the common xfst
formalism.

1.2 Description of the language Little Samoan

Samoan stress presents a good case study for a first comparison of the suc-
cinctness of grammars with and without feet. We can engage closely with the
literature and empirical data because a recent detailed foot-based OT analysis of
Samoan stress based on a rich set of elicited words is available [42]. [42]’s analy-
sis also extends to morphologically complex words parsed into multiple prosodic
words, and in future work, we plan to pursue comparisons of grammars with
higher-level prosodic constituents than feet.

We define Little Samoan (LSmo), a language of strings of syllables marked
for stress and weight, as a simplified version of the description of Samoan stress
in monomorphs provided in [42]. LSmo is defined over light and heavy syllables
rather than segments, and thus ignores complications from diphthongization and
the interaction of stress with epenthesis. In [42]’s description, Samoan outputs
LL for HL-final words to avoid heavy-light (HL) feet, and also presumably for
L (content) words, to satisfy minimal word constraints. Since our OT grammars
don’t change the syllable weights in the input, we model this in OT by mapping
LL and HL-final inputs to a special Null symbol denoting a null output [33]. Our
direct models simply define transductions that don’t accept HL and LL.

The basic primary stress pattern in LSmo (and Samoan) is moraic trochees
at the right edge [42, (4)], e.g. la("va:) ‘energized’, ("manu) ‘bird’, i("Noa) ‘name’;
exactly like better-known Fijian [15, §6.1.5.1], “if the final syllable is light, main
stress falls on the penult; if the final syllable is heavy, main stress falls on the
final syllable”. Secondary stress in LSmo is almost like in Fijian, where “secondary
stress falls on the remaining [non-final] heavy syllables, and on every other light
syllable before another stress, counting from right to left” [15, §6.1.5.1, p. 142],
e.g. (­ma:)(­lo:)("lo:) ‘rest’ [42, (7)]. However, LSmo has an initial dactyl effect:
initial LLL sequences are initially stressed, e.g. ("mini)si("ta:) ‘minister’ (cf. Fijian
mi(­nisi)("ta:)), ("temo)ka("lasi) (cf. Fijian pe(­resi)("te

>
ndi) ‘president’).4

[42] provides data on only two monomorphs that are longer than 5 moras:
[(­ma:)(­lo:)("lo:)] and a 7-mora all light loanword for Afghanistan. As noted in
[42, p. 281,fn. 2] the consultant produced (­Pafa)(­kani)si("tana), while a true

4 This ignores [42]’s evidence from LLLLL loan words showing that an initial weak-
strong-weak (WSW) pattern can occur if the first vowel in the word is epenthetic.



6

initial dactyl pattern would yield [(­Pafa)ka(­nisi)("tana)]. Little data is available
for longer words in Fijian, too, and there is variability [te(­reni)("sisi)(ta:)] ‘tran-
sistor’ vs. [(­ke:)(­misi)ti("ri:)] ‘chemistry’, which may be due to faithfulness to
stress in the source word and a dispreference for stressing epenthetic vowels, as
in Samoan [15, p. 144, (44b, 47)]. Due to the lack of data on longer words, we
limit testing empirical coverage of LSmo to monomorphs of 5 syllables (although
of course our grammars can accept input strings of arbitrary length). Also, we
allow a more general distribution of dactyls, which permits both initial or medial
dactyls. This allows both (­LL)(­LL)L("LL) and (­LL)L(­LL)("LL), and predicts,
for example, that HLLLH may be (­H)(­LL)L("H) or (­H)L(­LL)("H).

2 Four grammars for Little Samoan

In this section, we describe our grammars for LSmo: the foot-based direct ac-
count (§2.2), the syllable-based direct account (§2.3), the foot-based OT account
(§2.4), and the syllable-based OT account (§2.5). We define the transductions in
the grammar in xfst, with symbol counts in square brackets to the right of the
command. All of the xfst expressions we use are definitions, which get compiled
into transducers associated with a variable. These have the syntax define variable-
name xfst-expression. Our conventions for writing xfst expressions and counting
symbols are as follows: (a) xfst expressions are delimited by square brackets in a
define command. (b) Auxiliary terms are defined for any expression that appears
more than once in the grammar. (c) A conjunct or disjunct longer than one
symbol is enclosed in brackets. (d) Semicolons ending a line counts as a symbol;
spaces do not count. (e) A number or a character enclosed in double quotes,
e.g. "(", counts as one symbol. (f) Each variable name, command, operator, and
atomic expression counts as a single symbol, i.e. define, Heavy, WeakLight, etc., ?,
*, +, ^, .#., [, ], (, ), |, &, ~, \, $, ->, ,, =>, ->@ _, ..., .o., .O. (g) Symbols used to
define Gen (constant across the grammars) don’t contribute to the symbol count.

Each of the four grammars is implemented as a cascade of transducers and
all four share the same basic schematic architecture:

addMarkup .o. defineSyllableAndFootTypes .o. enforceSurfaceRestrictions
All accounts begin with the transduction Gen to mark up input sequences of
syllables with stress, as described in §2.1, and the foot-based accounts addition-
ally add markup to indicate foot edges. The markup transductions are the only
non-identity transductions in the implementations. The markup transduction is
followed by definitions of sub-types of syllables (and feet in foot-based accounts)
which are referred to in the definition of restrictions on the surface forms. The
difference between direct and OT accounts shows up in the way the surface re-
strictions are expressed: the OT accounts are limited to define the restrictions
as OT constraints used by phonologists, while the direct accounts are not.

2.1 Preliminaries: Adding stress markup with Gen

Let us call the transduction that generates all possible sequences of syllables
marked with degree of stress and weight Gen. We define Gen (4) as the com-



7

position of Input (1), SWParse (2), and ElevateProm (3). Input generates Σ∗ over
the alphabet of light (L) and heavy (H) syllables, Σ = {L,H}. Then, SWParse
marks the degree of stress on a syllable by inserting labeled brackets around each
syllable,5 (see Parse in [24] and also [4, p. 68]), e.g. the input L has the output
S[L] (strong/stressed), W[L] (weak/unstressed). Finally, ElevateProm optionally
replaces any strong syllable S[ ] with a primary stressed syllable, P[ ], so that S[ ]
now stands for secondary stress. As an example, input LL is mapped to {P[L]P[L],
P[L]W[L], P[L]S[L], W[L]P[L], W[L]W[L], W[L]S[L], S[L]P[L], S[L]W[L], S[L]S[L]}.

define Input [ "L" | "H" ]*; [9] (1)
define SWParse [ ? -> [ "S" "[" | "W" "[" ] ... "]" ]; [15] (2)

define ElevateProm [ "S" (->) "P" ]; [10] (3)
define Gen [ Input .o. SWParse .o. ElevateProm ]; [10] (4)

2.2 Direct account with feet

ParseFoot (6) parses the output from Gen into feet, marking it up with boundary
symbols; it refers to auxiliary terms for heavy [H] and light [L] syllables, Heavy
and Light (5). We restrict a foot to being bimoraic: either a LL or a H, so ParseFoot
wraps parentheses pairs around any LL or H, e.g. (P[L]W[L]), regardless of the
stress pattern. We then define types of feet to express restrictions on stress
patterns. Foot defines a foot as string of non-parentheses enclosed in parentheses
(7); PrimaryFoot defines a primary stressed foot as a string accepted by Foot that
includes P (8), and WeakLight defines a weak light syllable (9) using Light. We
define trochaic feet with Trochee (12), which accepts a strong-weak LL sequence
LLFoot (10), or a strong H HFoot (11). The sequence \"W" indicates the negation
of the character W, i.e. any character but W such as P or S, which mark strong
syllables.

With parsing the input into feet and definitions of types of feet behind us,
the payoff comes as we can express LSmo’s restrictions on stress patterns in
terms of feet. TrocheesOnly (13) forces feet to be trochaic: it only accepts strings
that are sequences of trochees that may be interspersed with unparsed syllables
(weak lights), e.g. it winnows down the parses for LL to just (S[L]W[L]) and
(P[L]W[L]). Additionally, PrimaryFootRight accepts only strings which terminate in
a foot bearing primary stress and whose final foot is not preceded by any other
primary stresses (14), e.g. eliminating (S[L]W[L]). Note that this transduction
eliminates lone Ls and HL-final strings in the language, since they do not have
parses with final primary stressed feet. Finally, we implement the “initial dactyl
effect” in LSmo with InitialDactyl (15), which forbids a sequence of a weak light
followed by a LL foot at the beginning of the word, if the LLL sequence is non-
final, i.e. followed by at least one character (?+). This yields the SWW-initial
output (S[L]W[L])W[L](P[H]) for LLLH sequences ([(­mini)si("ta:], [42, (8)]), but

5 We assume that syllable splitting feet do not occur [15, §5.6.2, p. 121].



8

a WSW pattern W[L](P[L]W[L)] for LLL sequences [i("Noa)], [42, (4)]. This also
allows outputs for HLLLH and 7Ls with medial dactyls. The final transduction
going from all possible sequences of stressed and weighted syllables to only those
in LSmo composes the foot parser with the restrictions on words in terms of feet
(16).6 All together, excluding Gen, the grammar (5-16) costs 141 symbols.

define Heavy [ "[" "H" "]" ]; define Light [ "[" "L" "]" ]; [16] (5)
define ParseFoot [ [ [ ? Light ]^2 | [ ? Heavy ] ] -> "(" ... ")" ]; [22] (6)

define Foot ["(" \\["(" | ")"]]* ")"]; [16] (7)
define PrimaryFoot [ Foot & $["P"] ]; [11] (8)

define WeakLight [ "W" Light ]; [7] (9)
define LLFoot [ "(" \"W" Light WeakLight ")" ]; [11] (10)

define HFoot [ "(" \"W" Heavy ")" ]; [10] (11)
define Trochee [ LLFoot | HFoot ]; [8] (12)

define TrocheesOnly [ Trochee | WeakLight ]*; [9] (13)
define PrimaryFootRight [ \"P"* PrimaryFoot ]; [9] (14)
define InitialDactyl ~[ WeakLight LLFoot ?+ ]; [10] (15)

define LSmoDirFt [ ParseFeet .o. TrocheesOnly

.o. PrimaryFootRight .o. InitialDactyl ]; [12] (16)

2.3 Direct account referring to syllables only

The definition of Gen in this account is the same as in §2.2, but then we state
restrictions on stress patterns in terms of syllables, rather than over feet. In addi-
tion to the previously defined auxiliary terms Heavy and Light (5), and WeakLight
(9), we also define: PrimaryLight and SecondaryLight, a primary P[L] and secondary
stressed light syllable S[L] (17); StressedSyll, a syllable of any weight that is not
weak (18); and W2, a sequence of two weak lights W[L]W[L] (a lapse) (19).

Restrictions on the distribution of secondary and weak lights are more com-
plex and are expressed as a series of cases. StressSLight (22) restricts a secondary
light to be followed by a non-final weak light (so a penult light cannot receive
secondary stress). In addition, a secondary light must be string-initial, preceded
by a lapse W[L]W[L], or preceded by a S[L]W[L], i.e. in terms of feet, start a new
foot. We must further restrict the position of weak lights, because the trans-
ducer that is the intersection of (20), (21), and (22) admits strings with lapses
anywhere, e.g. it accepts both P[L]W[L] and W[L]W[L] from the set of sequences
generated from input LL. RestrictLapse (23) restricts a lapse W[L]W[L] to be pre-
ceded by a secondary light and followed by a stressed syllable, allowing a lapse
just in case it is in a dactyl S[L]W[L]W[L] and not string-final. The intersection

6 LSmoDirFt can also be composed with a transduction that replaces W in unparsed
syllables with X, to match notation for the OT footed account in §2.4.



9

of StressPLight, StressSLight eliminates a lone stressed L, since StressPLight and
StressSLight restrict stressed lights to being non-final. But RestrictLapse does not
eliminate a lone weak L. Moreover, no transduction thus far eliminates HL-final
sequences.7 Thus, we must define transducers to ban HL-final sequences and lone
Ls: NoFinHL and NoLoneL (24). All together the grammar costs 145 symbols.

define PrimaryLight ["P" Light]; define SecondaryLight ["S" Light]; [14] (17)
define StressedSyll [ \"W" [ Heavy | Light ] ]; [12] (18)

define W2 [ WeakLight WeakLight ]; [7] (19)
define StressHeavy [ Heavy => "P" _ .#., "S" _ ]; [13] (20)

define StressPLight [ PrimaryLight => _ WeakLight .#. ]; [10] (21)
define StressSLight [SecondaryLight =>

[.#. | W2 | [StressedSyll WeakLight] | Heavy] _ WeakLight ? ]; [19] (22)
define RestrictLapse [ W2 => SecondaryLight _ StressedSyll ]; [10] (23)

define NoFinHL ~[?* ? Heavy ? Light]; [10] define NoLoneL ~[Light] ; [7] (24)
define LSmoDirSyll [ Gen .o. [ StressHeavy & StressPLight &

StressSLight & RestrictLapse ] .o. NoFinHL .o. NoLoneL ]; [20] (25)

2.4 Karttunen OT with feet

Our constraint set for this account is a subset of the constraints used in [42]; we
have removed constraints that are only relevant for segments, morphologically
complex words and multiple prosodic words. The partial ranking was computed
with OTSoft8 [16] based on monomorphemic candidates used in [42] and is:
Stratum 1 (i) FootBinarity (FtBin) A foot must contain exactly two moras. (ii)
RhythmType=Trochee (RhType=Trochee) A foot must have stress on its initial mora,
and its initial mora only. (iii) Align(PWd,R; "Ft,R) (Edgemost-R) The end of the
prosodic word must coincide with the end of a primary-stressed foot; Stratum
2 (i) Parse-σ Every syllable must be included in a foot. (ii) Align(Pwd;L,Ft,L)
The beginning of the prosodic word must coincide with the beginning of a foot.
Constraints in a earlier stratum are ranked higher than those in a later one, but
constraints within a stratum are not ranked with respect to one another.

7 HL-final sequences are allowed in [17]’s acceptor for Fijian stress (http://
phonology.cogsci.udel.edu/dbs/stress/language.php?id=109), based on [15]
basic description of Fijian stress, but [15, p. 145, §6.1.5.2]’s more detailed description
reveals that they should not be accepted.

8 All OTSoft input and output files are in the github repository.

http://phonology.cogsci.udel.edu/dbs/stress/language.php?id=109
http://phonology.cogsci.udel.edu/dbs/stress/language.php?id=109


10

define MarkUnparsed [ "W" (->) "X" ]; [10] (26)
define FtParse [ [ \"X" [ Heavy | Light ] ]+ -> "(" ... ")" ]; [19] (27)

define GenFt [ Gen .o. MarkUnparsed .o. FtParse]; [10] (28)
define Culminativity [ $.P ]; [8] (29)

define NullFinHL [ [?* Heavy [?]^<4 Light (")") ] ->@ "Null" ]; [27] (30)
define NullLoneL [ [ ("(") ? Light (")") ] -> "Null" ]; [21] (31)

define Unparsed [ "X" "[" ? "]" ]; [8] (32)
define FtBinH [ "(" ? Heavy ")" ]; [7] define FtBinLL [ "("[ ? Light]^2 ")" ]; [13] (33)

define FtBin [ FtBinH | FtBinLL | Unparsed ]*; [11] (34)
define Stressed [ "S" | "P" ]; [8] (35)

define RhTypeTrocheeH [ [ Heavy ")" ] => "("Stressed _ ]; [13] (36)
define RhTypeTroLL [ "[" "L" => "(" Stressed _ , "]" "W" _ , "X" _ ] ; [18] (37)

define RhTypeTrochee [ RhTypeTrocheeH & RhTypeTrocheeLL ]; [8] (38)
define ParseSyll ~[$"X"]; [8] (39)

define ParseSyll1 ~[[$"X"]^>1]; [13] define ParseSyll2 ~[[$"X"]^>2]; [13] (40)
define AlignWdLFtL [ "(" ?* ]; [8] (41)

define LSmoMonoFtOT [ GenFt .O. NullFinHL .O. NullLoneL .O. Culminativity

.O. FtBin .O. RhTypeTrochee .O. EdgemostR .O. ParseS .O. ParseS1 .O. ParseS2

.O. ParseS3 .O. ParseS4 .O. ParseS5 .O. AlignWdLFtL ]; [28] (42)

We compute constraints referring to a prosodic word edge with respect to
the edge of the input string since the input never contains more than a single
prosodic word. With the exception of Edgemost-R, our constraint definitions are
identical to those in [42, (5), (12)]. Some constraints, called categorical, assign
multiple violations to a candidate iff there are multiple places where the con-
straint is violated in the candidate, e.g. Parse-σ (39). Other constraints, called
gradient, “measure the extent of a candidate’s deviance from some norm”, and
can assign multiple violations even if there is a single locus of violation in the
input [28, p. 75]. [42] computes Align(Pwd;L,Ft,L) as a categorical constraint, e.g. 1
violation for *[sika("lamu)] ‘scrum’. However, Edgemost-R in [42] is computed gra-
diently, e.g. 2 violations for *[("pi:)niki]. We define it instead as categorical: since
it’s undominated in our constraint set, whether it is assessed categorically or
gradiently makes no difference. We can paraphase the constraint definition as
“assign a violation for every PWd where there exists a primary-stressed foot such
that the right edge of the PWd and the right edge of the primary-stressed foot
do not coincide” [29]. As we’ll discuss in §3, whether a constraint is categorical
vs. gradient markedly impacts the succinctness of the grammar in Karttunen’s
formalism, as does whether a constraint can be multiply or only singly violated.

We define the candidate set in the OT footed account with GenFt (28) as the
composition of Gen (4), MarkUnparsed (26), and FtParse (27). MarkUnparsed option-



11

ally replaces W[ ] with X[ ] to mark syllables unparsed into feet. FtParse parses
the input into feet by wrapping parentheses around a non-empty sequence of syl-
lables that are not unparsed, e.g. X[L](P[L]W[L]). We define three undominated
constraints not included in the OTSoft ranking: Culminativity (29), NullFinHL (30),
and NullLoneL (31). We define Culminativity (every word must contain exactly one
primary stress) as a constraint rather than a property of Gen to keep Gen con-
stant across grammars. NullFinHL and NullLoneL map HL-final and L inputs to
Null. These definitions allow the HL-final and L inputs to be footed or unfooted
and use directed replacement operators [4, p. 73]. For the -@> operator, replace-
ment strings are selected right to left, and only the longest match is replaced.

We then define constraints on feet. FtBin (34) restricts footed sequences to
be any sequence of heavy feet and LL feet (FtBinH, FtBinLL, (33)), and unparsed
syllables (Unparsed, (32)). We define RhyTypeTrochee (38) as the conjunction of
RhyTypeTrocheeH (36) and RhyTypeTrocheeLL (37). RhyTypeTrocheeH restricts a
heavy syllable followed by a parentheses, i.e. a footed H, to be preceded by
a parentheses and S (secondary) or P (primary): a footed H must be stressed.
RhyTypeTrocheeLL restricts a light syllable to be foot-initial and stressed (defined
with Stressed (35)), or non-initial in a foot and weak, or unparsed. It accepts
SWW dactyls. EdgemostR (not shown) is identical to PrimaryFootRight (14).

ParseSyll (39) must be implemented as a family of constraints because it can be
multiply violated; we discuss this further in §3. Each ParseSyllN constraint in the
family restricts the input string to have no more than N substrings containing
X, e.g. N = 1 in ParseSyll1 (40). We follow the implementation in [24, p. 10-11]9
We must impose some finite k-bound on the family; here we set k = 5 since
the range of patterns we want to account for are only as long as five syllables.
AlignWdLFtL (41) states that the beginning of the input string must coincide
with the beginning of a foot and then may be followed by any string. The final
transduction LSmoMonoFtOT is defined as a “lenient composition” (42).10 [24]
defines this (.O.) to be a special form of composition where input strings are held
back from being eliminated to keep the set of output candidates from becoming
empty. The order of “lenient” composition is important: the higher ranked a
constraint is, the earlier it must enter the composition. Within a stratum, order of
composition doesn’t matter. In total the OT footed grammar costs 306 symbols,
including 73 from the ParseSyll family and 16 from Light and Heavy.

2.5 Karttunen OT with syllables only

The grammar using Karttunen OT with syllables only is by far the biggest gram-
mar: it includes not only constraints that can be multiply violated, but also
gradient alignment constraints. There are few OT analyses of stress patterns
that are not based on feet, i.e. “grid-based” [3,13,22], and we drew on constraints
from them, but failed to generate only the allowed stress patterns up to 5 syllable

9 But there’s a typo in [24]; Parse is defined as ~$["X["]; but should be ~[$"X["];.
10 We abbreviate ParseSyll as ParseS for space; see github repository for definitions of

ParseSyllN for N > 2.



12

words without introducing ad-hoc constraints that referenced feet without nam-
ing them. The partial ranking was computed with OTSoft [16] and is: Stratum
1. (i) WeightToStress (WSP) A heavy syllable must be stressed. (ii) NonfinalityL A
word-final light syllable must be unstressed. (iii) NoLapseFollowingHeavy A heavy
syllable musn’t be followed by two unstressed syllables. (iv) NoInitialWS A word
musn’t begin with an unstressed-stressed sequence. Stratum 2. Align(x2,R,x0,PWd)
Assign a violation for every grid mark of level 2 that doesn’t coincide with
the right edge of level 0 grid marks in a prosodic word. Stratum 3. *Clash As-
sign a violation for every sequence of two stressed syllables. Stratum 4. *Lapse
Assign a violation for every sequence of two unstressed syllables. Stratum 5.
Align(x1;L,x0,PWd) Assign a violation for every grid mark of level 1 that doesn’t
coincide with the right edge of level 0 grid marks in a prosodic word.

Our constraint set includes the undominated constraints WeightToStress, Non-
finalityL (nonfinality restricted to light syllables) (49) [20], and two ad-hoc con-
straints: (i) NoLapseFollowingHeavy (50) essentially enforces that a LL sequence
after a heavy should be footed, and thus receive stress and allows the general
*Lapse constraint to be ranked lower, (ii) NoInitialWS (51) essentially bans iambic
feet word-initially. To achieve the initial dactyl effect, we used grid-based gra-
dient Align-x constraints drawn from the schema in [13, (2)]. Align(x2,R,x0,PWd)
enforces primary stress towards the right, while Align(x1;L,x0,PWd) is necessary
to promote SWW initial candidates. While WSP (48) and NoLapseFollowingHeavy
may have multiple loci of violation, because they are undominated, we were able
to implement them as if they could only be singly violated. However, we had
to implement a family of constraints to effectively count multiple violations for
*Clash, *Lapse, and Align(x2,R,x0,PWd). We used Culminativity (29) to filter out
strings with multiple primary stresses, so we could implement Align(x2,R,x0,PWd)
similarly to the ParseSyll family. But the implementation of Align(x1;L,x0,PWd) re-
quired doing arithmetic because the same number of violations could be incurred
by multiple stress patterns. We present a selection of the grammar below (see
the github repository for the full grammar); Gen (4) is the same as before. Pre-
viously defined transductions repeated here (not shown) are: Culminativity (29),
Heavy and Light (5), and W2 (19). We also defined Weak (43) and Stressed (44) syl-
lables, and clash S2 (45), two adjacent stressed syllables. Transductions similar
to NullFinHL and NullLoneL map HL-final and L inputs to Null (not shown).

The NoNClash family of constraints restricts the input from having N clashes:
if an input is not accepted by NokClash, then it is also not accepted for any N > k.
The constraints define languages that are in a strict subset relation, like [24]’s
ParseSyll family. We implemented NoNClash constraints (for N = 1, 2, 3, 4) as
conjunctions, because there are multiple stress patterns that can result in the
same number of clashes. For instance, an input may have two clashes because
it has two nonadjacent clashes, or because it has a sequence of three stressed
syllables, see No2Clash (47). The higher N is, the more conjuncts in the definition;
specifically, it is 2N−1. Already for No3Clash, we require 4 conjuncts: strings
containing a substring of 4 stressed syllables (SSSS, where S stands for stressed
syllable), two substrings containing SSS sequences, a substring containing SSS



13

followed by a substring containing SS, and a substring containing SS followed
by a substring containing SSS. The definition of NoNLapse is identical to that of
NoNClash, but replaces S2 with W2 and Stressed with Weak.11

define Weak "W" [ Heavy | Light ]; [9] (43)
define Stressed ["S"|"P"] [ Heavy | Light ] ; [13] (44)

define S2 [ Stressed Stressed ]; [7] (45)
define No1Clash ~[$[S2]]; [10] (46)

define No2Clash ~[$[Stressed]^3] & ~[[$[S2]]^2]; [25] (47)
define WSP [ Heavy => \W _ ]; [10] (48)

define NonfinalityL ~[?* \"W" Light]; [11] (49)
define NoLapseFollowingHeavy ~[$[Heavy W2]]; [11] (50)

define NoInitWS ~["W" Light "S" Light ?*]; [12] (51)
define AnySyll [ ? "[" ? "]" ]; [9] (52)

define Alignx2R0 [ Primary => _ .#. ]; [9] (53)
define Alignx2R1 [ Primary => _ [AnySyll]^<2 .#. ]; [15] (54)

define SWStar [Stressed [Weak]*]; [10] (55)
define Alignx1L1 ~[AnySyll SWStar]; define Alignx1L2 ~[AnySyll Weak SWStar]; (56)

define Alignx1L3 ~[AnySyll W2 SWStar] & ~[AnySyll Stressed SWStar]; [16] (57)

Similarly, we implement Align(x2,R,x0,PWd) as a categorical constraint, as the
family Alignx2RN. Each transducer Alignx2RN restricts primary stress to be at
mostN syllables, for any syllable (AnySyll (52)) from the right edge. All Alignx2RN
transducers for N > 1 have the same form as Alignx2R1 (54); the languages
accepted by the transducers are in a strict subset relation, and for words only up
to 5 syllables, Alignx2RN for N > 4 may be omitted. Align(x1;L,x0,PWd), though,
must be implemented as a gradient constraint. We do it in two parts. First we
define the Alignx1LN family, a set of transducers where Alignx1LN restricts the
input to have the sum of the distances that stressed syllables are away from
the left edge to total N . For example, Alignx1L3 (57) does not accept inputs
that are in ?WWSW* (3 violations) or ?SSW* (1+2 violations), and Alignx1L5
does not accept inputs that are in ?WWWWSW* (5 violations), ?SWWSW* (1+4
violations), or ?WSSW* (2+3 violations), where W stands for a weak syllable, S
for a stressed syllable, and ? for any character. The family definition refers to
auxiliary term SWStar, the language of a stressed syllable followed by any number
of unstressed syllables (55). Definitions for N = 1, 2, 3 are given in (56,57).

We then take intersections of the Alignx1LN languages to define languages
Alignx1LgM that accept any number of violations less than M . For example
Alignx1Lg5 is the intersection of Alignx1L5, Alignx1L6, Alignx1L7, . . ., Alignx1Lk,

11 See the github code repository for definitions of No3Clash (61 symbols) and No4Clash
(131 symbols) and the NoNLapse constraint family.



14

“don’t have 5, 6, 7, . . . k violations” where k is some finite upper bound. The
Alignx1Lg5 language contains S[H]S[L]W[L]P[H], which has a total of 1 + 3 = 4
violations, but not S[H]W[L]S[L]P[H], which has a total of 2 + 3 = 5 violations.
How high does k need to be? The output S[H]W[L]S[L]S[H]P[H] for HLLHH has
2 + 3 + 4 = 9 violations in total, while the output S[H]S[L]W[L]S[H]P[H] has
1+3+4 = 8 violations in total. With our constraints, these two candidates have
no other difference in their violation profiles. Thus, our transduction should ad-
mit the candidate with 8 violations, and not the one with 9. The candidate with
8 violations should be in any Alignx1LgM language where M > 8, in particular,
in the Alignx1Lg9 language, while the candidate with 9 should not. However, if
k = 8, and we define Alignx1LgM transducers up to M = 7, then Alignx1Lg7 is the
intersection of Alignx1L7 and Alignx1L8 “don’t have 7 or 8 violations”. Then the
candidate with 9 violations is in the Alignx1Lg7 language, while the candidate
with 8 isn’t: the transduction outputs the wrong candidate. To output the cor-
rect one, we must have k ≥ 10, withM ≥ 9: even for only up to 5-syllable words,
we must have k ≥ 10. Minimally we must include Alignx1L10 in the conjunction
that defines Alignx1Lg9. In general, a n-syllable word can have a maximum of∑n−1

i=2 i violations of Align(x1;L,x0,PWd) and k must be greater than that sum.
The language derived by the OT syllable grammar has a small difference

from the others: while all the other grammars admit two outputs for HLLLH:
S[H]S[L]W[L]W[L]P[H] or S[H]W[L]S[L]W[L]P[H], the OT syllable account admits
only S[H]W[L]S[L]W[L]P[H]. But [42] doesn’t actually include elicited data for
HLLLH, so we don’t know which pattern(s) our consultants would accept. The
striking difference about the OT syllable grammar is in its size. It is much larger
than any of the other grammars, and the growth of the size of the grammar
increases rapidly with the length of the input string: the definition of just the
gradient constraint Align(x1;L,x0,PWd) takes more symbols than any of the other
entire grammars, and the definitions of the clash and lapse constraints alone
already grow exponentially with the size of the input. Moreover, all of the con-
straints which can be multiply violated cannot be implemented as finite state
transducers, and our implementations approximating these constraints require
doing arithmetic and defining constraint families that have the effect of count-
ing up violations to some finite bound. Finally, to just get near-coverage of the
data without feet, we needed to define ad-hoc constraints that referenced feet
without revealing generalizations in the structural restrictions on stress patterns.
And additional exploratory calculations from OTSoft showed that we still need
gradient alignment constraints to fit the data, despite including additional cat-
egorical constraints from [22]’s Rhythmic Licensing Theory—designed to avoid
gradient constraints (see github repository, otsoft-files/syll/test-with-rlt).

3 Discussion

We examined the set of possible stress patterns from our grammars by com-
posing our final transducers with an identity transducer that was defined as a
disjunction of elicited/expected stress patterns for LSmo up to 5 syllables. We



15

also defined an identity transducer for all possible light-heavy inputs up to 5 syl-
lables and composed that with our final transducers. Then we checked that the
set of strings defined by these two compositions was identical for each grammar
and across grammars. Our four grammars for LSmo admit exactly the same set
of stress patterns up to 5 syllables, with the one exception mentioned above: the
OT syllable account admits only one stress pattern for HLLLH. Thus, the MDL
metric, relativized to the descriptive resources of xfst, reduces to the size of the
grammar, although that’s not quite the case for the OT syllable account. The
direct accounts were almost the same in size: 145 symbols for the syllable ac-
count and 141 symbols for the footed account; the OT footed grammar cost 306
symbols. The small differences between these is insignificant, compared to the
qualitatively different character of exponential growth we saw in definition of the
OT syllable grammar, with a count in the 1000s. Even if including a battery of
constraints from Rhythmic Licensing Theory [22], we found that an OT syllable
grammar would still need to include multiply violated clash and lapse constraints
and gradient Align constraints; we’d also expect this to be true in general beyond
the Samoan case study here, such that the size of OT syllable-based grammars
would in general blow up.

Our results show that with a direct account, a grammar referencing feet in
the description of stress patterns in LSmo is about as succinct as a grammar
that does not. By this metric, one isn’t preferable to the other. Also, the size of
the direct grammars is a few times smaller than even the OT footed grammar,
so Karttunen OT grammars are certainly not preferable by succinctness. For
the OT accounts, a grammar referencing feet is sizeably more succinct than one
that references only syllables, showing the utility of feet. It’s interesting that the
direct footed account wasn’t notably more succinct than the direct syllable one;
this could be because of the narrowness of the scope of phonological phenomena
considered here. For instance, patterns of stress shift in Samoan upon affixation
can be generalized on the basis of constituents [42], but here we considered only
monomorphs. The more phonological processes that reference constituents in the
grammar, the more the savings from those constituents.

One thing to stress about the foot-based grammars, is that although they
place boundaries (parentheses) in the string language, they are very different
from SPE-style “boundary symbol theory” [8,37]. In our grammars, the use of
boundary symbols is not arbitrary; rather a left parentheses signals entering
into a sequence of states representing a constituent, and a right parentheses is
invariably placed when that sequence of states is completed. As [37] points out,
compared to a grammar which references nested units in the prosodic hierarchy,
grammars with boundary symbols may be expressive enough to fit the data,
but the lack of a well-defined relation between the different boundary symbols
makes the grammars much too expressive. Moreover, boundary symbol theory
locate the boundary symbols in the alphabet and allows their placement to
be restricted only by general restrictions on possible rewrite rules. But we are
coding constituency into the state: the LSmo foot-based grammars place paren-
theses in the string language so we can refer to the units that they enclose, and



16

what restricts their placement is the phonological generalizations defined in the
grammar.

Comparing the direct grammars to the OT grammars, a number of the trans-
ducers defined are identical or similar, e.g. EdgemostR appears in both footed
accounts. This suggests that structural regularities we notice in phonological
patterns can be well-described in both types of grammars. However, there is a
striking difference between the direct grammars and the OT grammars: the OT
grammars have scaling problems. The two direct accounts defined can handle
syllable strings of arbitrary length. But for the OT accounts, as the syllable
string gets longer, the amount of counting that needs to be done increases. In
the foot-based OT account, we defined ParseSyll constraint family only up to 5
syllables. Add another syllable to the syllable string, and the grammar becomes
inadequate. In the syllable-based OT account, the NokClash and Align constraint
families also effectively count up violations, resulting in the same kind of scaling
problem. As previously mentioned, it is in fact the unlimited violation count-
ing that "pushes [standard] optimality theory out of the finite domain" [24,
p. 11]. The adequacy of the direct accounts—which are similar in size to the
OT grammars and even describe similar regularities—suggests that perhaps this
additional power is unnecessary.

It is also an advantage that finite state transducers are sufficient to define
the direct grammars. Defining phonology with finite state tranducers is not only
helpful as a common formalism with comparison of syntax (and other patterns),
but also enables us to compose phonological transducers with syntactic ones to
model the syntax-phonology interface. In contrast, the expressive power of finite
state transducers is not enough to define OT grammars where underlying forms
are mapped directly to surface forms rather than violation vectors. As noted by
[24], any constraint that can be multiply violated such as Parse-σ cannot be de-
fined with a finite state transducer in [24]’s formalization of OT because a finite
system cannot distinguish between infinitely many degrees of well-formedness
[10,28]. If, instead we do define relations that map from underlying forms to
violations as in standard OT, we can easily use xfst to implement Parse-σ as:
define ParseSyllOT [ "Unparsed" -> "1" , \"Unparsed" -> "0" ]; [11]. The FST is triv-
ial: a 2-state machine, where one state maps any syllable that is not unparsed to
0 and the other maps an unparsed syllable X[?] to 1, e.g. it maps X[L]P[L]X[L] to
101. This shows an advantage to mapping to violations in Con, but then the scal-
ing problem with counting is shifted to Eval. In Karttunen’s formalization, both
gradient and categorical constraints that can assign multiple violations cannot
be defined with a FST. Moreover, as we saw with Align(x1;L,x0,PWd), the imple-
mentation of gradient constraints is even more cumbersome. Not only are the
machines that xfst compiles them into much too big and redundant to discover
generalizations in; even the high-level language description are, too. When OT
transduces instead to violation marks, only gradient constraints cannot be de-
fined with a FST. While [28] argues that OT constraints are categorical, even if
that is the case, Eval isn’t a finite state process. OT isn’t regular if the number
of violations is unbounded [10].



17

4 Conclusion

In this paper, we implemented and compared syllable- and foot-based grammars
of Samoan stress patterns. We made this comparison in Karttunen’s finite state
formalization of OT, and in grammars directly describing restrictions of the
surface patterns. The definition and comparison of the grammars was done in the
xfst language to follow linguistic practice, since xfst was designed to be a high-level
language that makes it easy to express and detect linguistic generalizations. Such
generalizations might not be revealed at the level of a regular grammar or finite
state machine. In the OT formalism, having the prosodic constituents of feet
clearly allowed the grammar to be much more succinct. However, whether or not
we have feet in the direct account did not impact succinctness of the grammar.
It is striking that direct finite-state descriptions of phonological patterns have
revealed strong structural universals without referring to constituents, while the
advantage of having constituents is clear in the OT formalism used here. The
difference in the comparison between the two types of grammars may simply be
because our measure of succinctness is not appropriate, and also may not hold
in general, or because the range of phonological phenomena considered here is
too narrow.

A natural follow-up to the work here would be to extend grammar com-
parisons to a wider range of phonological phenomena that have been studied
in prosodic phonology. For instance, all the dependencies in the Little Samoan
language defined here are local. What if the language included non-local de-
pendencies? Another natural follow-up would be to explore the consequences of
introducing constituents in more expressive grammars. For instance, OpenFST
is a finite state transducer library that offers the capability to define grammars
with the expressivity of context-free languages via pushdown automata, which
are finite state transducers augmented with a stack [2,1]. It would be interesting
to see if a comparison of syllable-based and foot-based grammars for Samoan
stress defined with pushdown automata might yield different results from the
ones here. More broadly, this paper shows a way in which we can study con-
crete, specific linguistic proposals and engage closely with linguistic practice,
while still maintaining a rigorous approach. We hope that this proof of concept
may inspire additional computational work taking this kind of approach.

References

1. Allauzen, C., Riley, M.: A pushdown transducer extension for the OpenFst library.
In: N., M., R., R. (eds.) Implementation and Application of Automata. CIAA 2012.
vol. 7381. Springer, Berlin, Heidelberg (2012)

2. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A gen-
eral and efficient weighted finite-state transducer library. In: Implementation and
Application of Automata. CIAA 2007 (2007)

3. Bailey, T.: Nonmetrical constraints on stress. Ph.D. thesis, U. Minnesota (1995)
4. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI, Stanford, CA (2003)



18

5. Berwick, R.C.: Mind the gap. In: Gallego, A., Ott, D. (eds.) 50 Years Later, pp.
1–12. MITWPL77, MIT, Cambridge, Massachusetts (2015)

6. Bird, S., Ellison, T.M.: One level phonology: autosegmental representations and
rules as finite automata. Computational Linguistics 20, 55–90 (1994)

7. Chomsky, N.: Three descriptions of language. IRE Transactions in Information
Theory 2(3), 113–124 (1956)

8. Chomsky, N., Halle, M.: The sound pattern of English. The MIT Press (1968)
9. Eisner, J.: Efficient generation in Primitive Optimality Theory. In: Proceedings of

the 35th Annual Meeting of the Association for Computational Linguistics (1997)
10. Frank, R., Satta, G.: Optimality Theory and the generative complexity of con-

straint violability. Computational Linguistics 24(2), 307–315 (1998)
11. Gainor, B., Lai, R., Heinz, J.: Computational characterizations of vowel harmony

patterns and pathologies. In: Choi, J., et al. (eds.) WCCFL 29. pp. 63–71. Cas-
cadilla Proceedings Project, Somerville, MA (2012)

12. Goldsmith, J.A.: Autosegmental phonology. Ph.D. thesis, MIT (1976)
13. Gordon, M.: A factorial typology of quantity insensitive stress. NLLT 20, 491–552

(2002)
14. Hartmanis, J.: On the succinctness of different representations of languages. SIAM

Journal on Computing 9, 114–120 (1980)
15. Hayes, B.: Metrical stress theory. U. Chicago Press (1995)
16. Hayes, B., Tesar, B., Zuraw, K.: Otsoft 2.4. Software package (2016), http://www.

linguistics.ucla.edu/people/hayes/otsoft/
17. Heinz, J.: On the role of locality in learning stress patterns. Phonology 26(02),

303–351 (2009)
18. Heinz, J.: Learning long-distance phonotactics. LI 41(4), 623–661 (2010)
19. Hulden, M.: Finite state syllabification. In: Yli-Jyrä, A., Karttunen, L., Karhumäki,

J. (eds.) FSMNLP05, pp. 120–131. Springer-Verlag, Berlin (2006)
20. Hyde, B.: Non-finality and weight sensitivity. Phonology 24(2), 287–334 (2007)
21. Johnson, C.D.: Formal aspects of phonological description. Mouton (1972)
22. Kager, R.: Rhythmic licensing theory: an extended typology. In: Proceedings of

the 3rd Seoul International Conference on Phonology. pp. 5–31 (2005)
23. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-

tional Linguistics 20(3), 331–378 (1994)
24. Karttunen, L.: The proper treatment of optimality in computational phonology.

In: FSMNLP’98 (1998)
25. Kenstowicz, M.: Cyclic vs. non-cyclic constraint evaluation. Phonology 12, 397–436

(1995)
26. Kiparsky, P.: Word formation and the lexicon. In: Ingemann, F. (ed.) Proceedings

of the 1982 Mid-America Linguistics Conference. pp. 3–29. University of Kansas,
Lawrence (1982)

27. Kornai, A.: Formal phonology. Ph.D. thesis, Stanford University (1991)
28. McCarthy, J.J.: OT constraints are categorical. Phonology 20(1), 75–138 (2003)
29. McCarthy, J.J., Prince, A.S.: Generalized alignment. Morph. pp. 79–153 (1993)
30. Meyer, A., Fischer, M.: Economy of description by automata, grammars, and for-

mal systems. In: SWAT 1971. pp. 188–191 (1971)
31. Nespor, M., Vogel, I.: Prosodic phonology. Foris Publications, Dordrecht (1986)
32. Prince, A., Smolensky, P.: Optimality theory: Constraint interaction in generative

grammar. ROA version, 8/2002, Rutgers University Center for Cognitive Science
(1993)

33. Prince, A., Smolensky, P.: Optimality Theory: Constraint interaction in generative
grammar. Blackwell Publishing, Malden, Massachusetts (2004)

http:// www.linguistics.ucla.edu/people/hayes/otsoft/
http:// www.linguistics.ucla.edu/people/hayes/otsoft/


19

34. Rasin, E., Katzir, R.: On evaluation metrics in Optimality Theory. LI (To appear)
35. Rissanen, J.: Stochastic complexity in statistical inquiry theory (1989)
36. Salomaa, A.: Formal languages. Academic Press, New York, New York (1973)
37. Selkirk, E.: Prosodic domains in phonology: Sanskrit revisited. In: Aronoff, M.,

Keans, M.L. (eds.) Juncture. Anma Libri, Saratoga, California (1980)
38. Selkirk, E.O.: Phonology and syntax. MIT Press, Cambridge, MA (1986)
39. Stabler, E.P.: Two models of minimalist, incremental syntactic analysis. Topics in

Cognitive Science 5(3), 611—633 (2013)
40. Wagner, M., Watson, D.G.: Experimental and theoretical advances in prosody: a

review. Language and Cognitive Processes 25, 905–945 (2010)
41. Zuraw, K.: Prosodic domains for segmental processes? (June 2009), https://www.

mcgill.ca/linguistics/files/linguistics/Handout_RevisedForMcGill.pdf
42. Zuraw, K., Yu, K.M., Orfitelli, R.: The word-level prosody of Samoan. Phonology

31(2), 271–327 (2014)

https://www.mcgill.ca/linguistics/files/linguistics/Handout_RevisedForMcGill.pdf
https://www.mcgill.ca/linguistics/files/linguistics/Handout_RevisedForMcGill.pdf

	Advantages of constituency: computational perspectives on Samoan word prosody

