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Abstract
Low pitch, irregular pitch, and constricted voicing have been
proposed as three independent perceptual properties of creaky
voice quality, with corresponding acoustic correlates fundamen-
tal frequency, harmonics-to-noise ratio, and spectral tilt mea-
sure H1-H2. We examined how these three acoustic mea-
sures described the variability in a small corpus of multispeaker
productions of low falling tones that are often creaky in Bei-
jing Mandarin, Cantonese, and White Hmong. Using principal
components analysis, we found that harmonics-to-noise ratios
strongly dominated the first principal component (50-60% of
the variance across languages), while fundamental frequency
and H1-H2 were strongly correlated. Moreover, in all three
languages, tokens identified as likely to be creaky by a neu-
ral network creak classifier (Drugman et al. 2014) clustered in
the high noise region of the principal component space accord-
ing to the first principal component. No systematic patterns
of clustering with respect to fundamental frequency or spec-
tral tilt were found. Principal component analysis on only to-
kens identified as having greater than a 50% likelihood of being
creaky indicated a lack of statistical independence between the
three acoustic measures across languages and no distinct clus-
ters were found in the principal component space in any lan-
guage.
Index Terms: voice quality, creak, tone, phonation

1. Introduction
Creaky voice quality is not a monolithic, unitary perceptual
category; rather, there are distinct sub-types [1]. Most re-
cently, [2, 3] proposed low pitch, irregular pitch, and con-
stricted voicing to be three independent perceptual properties of
creaky voice quality, with corresponding acoustic correlates of
low fundamental frequency (f0), low harmonics-to-noise ratios
(high noise), and low spectral tilt measure H1-H2 (difference
in amplitude between first and second harmonic), and in addi-
tion, high subharmonics-to-harmonics ratio—a special kind of
noise measure, an acoustic correlate of multiply pulsed creak.
Here, we mean independent in the sense that having a single
one of these properties alone has been proposed to be suffi-
cient for inducing a creaky voice quality percept (sub-type). In
this phonetic creak space, [2, 3] have also identified distinct
kinds of creak, e.g., vocal fry (low pitch, constricted voicing,
but not irregular pitch), unconstricted creaky voice (irregular
pitch, low pitch, but not constricted). Given these identified
sub-types, we might expect creaky exemplars to cluster in dif-
ferent regions over the proposed 3D acoustic space, rather than
for exemplars to be uniformly distributed over the space. If
the contrast in identified sub-types is linguistically important,
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e.g., [3] gives the example of one sub-type being associated
with prosodic phrasing while another is associated with seg-
mental identity, then sufficient acoustic separation between the
two sub-types could be important for perceptual contrast. If
one of the three perceptual properties is sufficient for a creaky
percept, we might also expect the three corresponding acoustic
dimensions to show statistical independence, e.g., naively, with-
out consideration to correlations due to articulatory configura-
tions, if low f0 is sufficient for a speaker to induce a creaky per-
cept, then there is no need to also have high noise/irregularity.

In this paper, we examined how the acoustic measures un-
derlying the proposed phonetic creak space (harmonics-to-noise
ratios, H1-H2, and f0, as well as subharmonics-to-harmonics ra-
tio) characterize the variability in a small corpus of multispeaker
productions of low falling tones that are often creaky in Beijing
Mandarin, Cantonese, and White Hmong. Table 1 shows the
tonal inventories of the three languages, with tones ordered by
level tones, rising tones, and then falling tones; low falling T21
(Ą£, boxed) occurs in all three inventories and has been shown
to be often produced with creak in all three languages (Bei-
jing Mandarin: [4], Cantonese: [5], White Hmong: [6], see
also refs. within). In all three languages, some perceptual work
has suggested that creak in these T21 low falling tones may be
concomitant with the production of low f0 such that creak inde-
pendent from low f0 does not necessarily bias listeners towards
identifying T21 (Mandarin: [4, 7], White Hmong: [8], Can-
tonese: [9]); [4] also proposed that creaky voice quality could
serve as a way to enhance low pitch cues.

Table 1: Tonal inventories of languages

Language Tonal inventory

Beijing Mandarin
Ă
£,Ğ£,Ď£, Ą£

Cantonese
Ă
£,Ă£,Ă£,Ğ£,Ě£, Ą£

White Hmong Ě£,Ă£,Ă£,Ę£,Č£, Ą£

Given these results, we might expect f0 and the other acous-
tic properties associated with creak to be strongly correlated in
productions of T21 in these languages. For instance, we might
expect a token with lower f0 to also have lower H1-H2, and
higher noise. Moreover, we might expect there to be a gra-
dient of increased creakiness in terms of these acoustic mea-
sures in the phonetic space over all T21 tokens—including ones
that might be perceived/categorized as non-creaky. However,
given the proposed perceptual independence of the three pri-
mary creak space dimensions, we might also expect, a priori,
that they could be statistically independent, i.e., orthogonal to
one another. We used principal components analysis (PCA)
as an exploratory method to investigate the statistical indepen-
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dence of and interactions between f0, H1-H2, and noise mea-
sures in characterizing the acoustics of T21 tokens in the three
languages. PCA determines statistically independent dimen-
sions that account for the most variability in the data over the
input parameters. It also does not require any distributional as-
sumptions; distributional assumptions of normality are needed
only for inferential statistics with PCA. We also used the auto-
matic creak detector of [10] as a starting point to observe how
the likelihood of a token being creaky related to its position in
the phonetic space. We performed PCA again on the subsets of
T21 tokens detected to be more likely to be creaky than not.

2. Materials and Methods
2.1. Tonal production corpus

Data came from a subset of recordings described in [11, Ch. 1]
that included Tone 21 as a sentence-medial target tone. Tone 21
was produced as either the first or second syllable of a bitone
uttered as part of a sentential carrier phrase, where the bitone
varied over all possible tone combinations in the language. In
the recordings, the bitone was flanked by mid level tones in
Cantonese and Hmong and by low and high tones in Mandarin
(following [12]), and speakers produced five fluent repetitions
of each tonal sequence combination. Segmental material for
the target syllables was chosen to be sonorant with low vowel
quality when possible to facilitate f0 and voice quality measure
extraction (Mandarin: [ma], Cantonese: [lau], Hmong: [la]).
For this paper, the data consisted of the following number of
tokens: Beijing Mandarin (4 men, 4 women, 909 tokens), Can-
tonese (6 men, 6 women, 2095 tokens) and White Hmong (4
men, 2 women, 613 tokens). Vowels were manually segmented
in Praat [13] in preparation for voice quality measurements.

2.2. Voice quality measurements

VoiceSauce [14] was used to automatically extract the acoustic
measures proposed to be relevant for characterizing creak: fun-
damental frequency, noise measures, and spectral tilt measure
H1-H2. In particular, we computed f0 using the STRAIGHT al-
gorithm [15], formant frequencies and bandwidths using default
settings for Praat, H1-H2, which was corrected for the effect of
formants [16], the harmonics to noise ratios in bandwidths from
0-500 Hz (HNR05), 0-1500 Hz (HNR15), 0-2500 Hz (HNR25),
and 0-3500 Hz (HNR35) [17], and the Subharmonic to Har-
monic Ratio (SHR), that calculates the amplitude ratio between
subharmonics and harmonics [18]. We configured the f0 limits
specifically for each speaker, since with creaky voice irregulari-
ties in f0 are common. We set a floor f0 value of 40 Hz for all of
the speakers since creaky regions can have low f0 values, while
f0 ceiling values for each speaker were determined by manually
estimating the highest f0 values uttered in high tones and adding
an additional 15 Hz buffer.

2.3. Creak assessment

Following [19] and [20], we used the MATLAB creak detec-
tor [10] detect creaky voice.m available at the covarep
Github repository to automatically estimate the likelihood that
a token was creaky, with default settings. [19] found an 81.3%
agreement rate between the detector and hand-classified sample
of Mandarin. The algorithm uses acoustic features, including
H1-H2, energy- and f0-based measures, as well as acoustic pe-
riodicity/irregularity features proposed in [21], in a neural net-
work with a single hidden layer. It outputs a creak probabil-

ity estimate with a 10ms frameshift. We estimated the overall
likelihood of creak of a token as the mean creak probability es-
timated over all frames within the vowel. Up to this point we
have not yet hand-validated the automated creak detection, but
plan to in future work.

2.4. Statistical analysis

R [22] was used to conduct PCA with the mean extracted val-
ues over the vowel of the parameters chosen during VoiceSauce
analysis. Each voice quality parameter mean was scaled within
each speaker as z-scores to standardize the scales over all pa-
rameters for interpretation of PCA. We used dplyr [23] and
ggplot2 [24] packages for data extraction and plotting, and
factoextra [25] for PCA visualization.

3. Results and Discussion
3.1. PCA space for all T21 tones

The first three PCs accounted for approximately 90% of the to-
tal variance across the T21 tokens in each language: for P1-P3,
respectively: Cantonese: 58.7%, 18.2%, and 14.7%; Hmong:
55.6%, 19.5%, 13.7%, Mandarin: 61.1%, 18.0%, 11.4%. The
variable correlation plots in Figures 1-3 show the correlation
between the voice quality variables and PCs 1 and 2. The ar-
rowhead points to the direction of positive correlation between
a variable and a principal component axis; a small angle be-
tween two variable vectors means that they are strongly corre-
lated, while variable vectors orthogonal to one another are un-
correlated, and a small angle between a variable vector and a
PC axis means that that variable strongly influences that PC.
The further away a variable vector is from the origin, i.e., the
higher the squared cosine (cos2) value and redder the color of
the vector, the more important it is for the first two components
(see [26]). If the noise (HNRs), spectral tilt (H1-H2), and f0
dimensions each perfectly mapped onto separate PCs, we’d ex-
pect to see one of the corresponding vectors along the x-axis,
another along the y-axis, and the last with a distance very close
to the origin (and thus not well-described by PC1 or PC2). This
is not what we find.

The variable correlation plots show that, across all three
languages, all HNRs were highly positively correlated with one
another and dominated PC1. Moreover, H1-H2 and f0 were
most important for PC2 in Hmong and Mandarin and their cor-
responding vectors were not well-correlated with HNRs—in
fact, they’re orthogonal to HNRs in Mandarin. H1-H2 was also
strongly positively correlated with f0 in Hmong and Mandarin.
However, in Cantonese, f0 was positively well-correlated with
HNRs, as indicated by the relatively small angle between them,
and both f0 and H1-H2 did not strongly dominate PC2, but con-
tributed to all first three PCs.

In sum, according to the exploratory PCA analysis over all
T21 tokens (including many non-creaky ones), the statistical
independence of the acoustic correlates of the three proposed
creaky voice quality dimensions varied across the three lan-
guages. PC1 defined the noise dimension (as indexed by HNRs)
and was independent from the spectral tilt (H1-H2) and f0 di-
mensions across all three languages; however, spectral tilt and
f0 were strongly, positively correlated and distributed across
PCs. The strong positive correlation between spectral tilt and
f0 is consistent with [27]’s perceptual results of the integration
of the two in pitch perception and the idea of low spectral tilt
serving as an enhancement for low f0. Interestingly, SHR was
almost orthogonal and thus largely uncorrelated with the HNR
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noise measures, although SHR can also be considered a noise
measure. This indicates that both types of noise measures may
be useful in describing the phonetic space of often-creaky low
tones.
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Figure 1: Variable correlation plot: (PC1, PC2), Cantonese
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Figure 2: Variable correlation plot: (PC1, PC2), Hmong
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Figure 3: Variable correlation plot: (PC1, PC2), Mandarin

The biplots in Figures 4, 5, and 6 illustrate the distribu-
tion of individual T21 tokens over the acoustic space defined by

(PC1, PC2) for each language, together with the projection of
the voice quality variables onto the first two principal compo-
nents shown previously. Each token is colored by its estimated
likelihood of being creaky, with the tokens most likely to be
creaky colored on the red side of the color spectrum. All three
plots show that T21 tokens estimated to have a high likelihood
of creak (the reddest dots) cluster in the same region: where
HNRs are low (high noise). We could draw a line aligned to the
PC1 axis dominated by HNR as an excellent decision bound-
ary between the creaky and non-creaky tokens. The clustering
of creaky tokens does not appear to be well-explained by any
other variable than HNR in any language, as evidenced by the
sprawl of creaky tokens across the y-axis. Thus, at least ac-
cording to the creak detector of [10], creakier T21 tokens in the
White Hmong, Cantonese, and Beijing Mandarin samples ana-
lyzed are distinguished from non-creaky T21 tokens primarily
by high noise.

In [10], the automatic creak detector was validated against
manual determination for its performance on qualitatively dif-
ferent kinds of creak: Pattern A: “highly irregular temporal
characteristics” (not necessarily low f0, but high noise, some
multiple pulsing), Pattern B: “fairly regular temporal charac-
teristics with strong secondary excitation peaks” (low f0, con-
stricted, not necessarily high noise, but with “double-beats”),
and Pattern C: “fairly regular temporal characteristics without
strong secondary excitation peaks” (low f0, constricted, not nec-
essarily high noise), i.e., vocal fry. The automatic creak detec-
tor did the worst on detecting Pattern C. Therefore, it is possi-
ble that the detector was biased towards identifying high noise
tokens as most likely to be creaky, accounting in part for the
clustering of creaky tokens observed.
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Figure 4: Biplot of Cantonese T21 tokens over PCs 1, 2
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Figure 5: Biplot of Hmong T21 tokens over PCs 1, 2
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Figure 6: Biplot of Mandarin T21 tokens over PCs 1, 2

3.2. PCA space for T21 tones with an estimated >50% like-
lihood of being creaky

The same exploratory analysis was conducted for the subset
of T21 tones estimated as having a >50% likelihood of being
creaky in each language: 385 tokens (18% of total T21 tokens)
for Cantonese, 258 tokens (42%) for Hmong, and 270 (30%) for
Beijing Mandarin. The first three PCs accounted for 83-91% of
the total variance over T21 tokens: for PC1-PC3, respectively,
Cantonese: 49.5%, 26.4% and 16.1%, Hmong: 41.9%, 29.3%,
11.8%, Mandarin: 46.6%, 25.7%, 16.3%. Unlike the corre-
lation plots for all T21 tokens, the variable correlation plots
for the creaky subset (Figures 7-9) show much more mixing
of HNRs, f0, and H1-H2 within PCs. In particular, HNRs, f0,
and H1-H2 all contribute comparably to PC1 and PC2 in Can-
tonese, rather than PC1 being dominated by HNRs. In Man-
darin, SHR contributed most to PC1, and H1H2 to PC2, while
f0 and HNRs were spread across multiple PCs. Hmong showed
the least change from the space over all T21 tokens: HNRs still
dominated PC1 and f0 and H1-H2 were still strongly correlated
and dominated PC2. Additionally, when the subsets of creaky
T21 tokens were plotted over the first three PCs, no clusters of
points emerged, e.g., a cluster of tokens with acoustic properties
expected for multiple pulsing and/or a cluster with properties
expected of vocal fry, etc.
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Figure 7: Variable correlation plot: Cantonese creaky T21s

4. Conclusions
Within the three language samples of low falling tokens, we
did not observe evidence of different kinds of creak types, e.g.,
vocal fry vs. tense vs. prototypical creak vs. multiply pulsed
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Figure 8: Variable correlation plot: Hmong creaky T21s
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Figure 9: Variable correlation plot: Mandarin creaky T21s

creak in the distribution of tokens over PCA space or in the def-
inition of principal components over all tokens over within the
detected creaky subset. Rather, harmonics-to-noise ratios as a
class were statistically independent from f0 and spectral tilt and
accounted for the most variability in the data, and tokens were
quite evenly distributed over PCA space rather than clustered.
This indicates that although creaky voice quality may have sub-
types that are categorically distinct from one another, produc-
tions of low falling tokens that are often creaky can fall on a gra-
dient over the phonetic space. Notably, the likely creaky tokens,
among all T21 tokens, were not confined in low f0/low spectral
tilt regions, which we might expect if low spectral tilt and low
f0 work together to enhance a low pitch percept. The impor-
tance of HNRs in both characterizing the variability over the
low falling tokens and in identifying tokens likely to be creaky
is a welcome result, as HNRs are less sensitive than many other
voice quality measures to the difficulties of estimating f0, which
is often ill-defined in creak. However, these results come with
the caveat that they are of course dependent on the definition
of the creak detector used. Thus, while the exploratory strate-
gies employed here can be generalized regardless of the chosen
method of creak detection, the results cannot. To avoid circu-
larity, the results here must be supplemented with further val-
idation both by human detection of creakiness and additional
automatic creak detectors such as [28].
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